Recycled plastic modified bitumen: Evaluation of VOCs and PAHs from laboratory generated fumes

Sci Total Environ. 2022 Aug 1:832:155037. doi: 10.1016/j.scitotenv.2022.155037. Epub 2022 Apr 5.

Abstract

A key aspect when investigating the use of recycled plastics in bitumen relates considerably to the issues relating to occupational, health and safety for humans and the environment from a fuming and emissions perspective. This research investigates laboratory-generated fumes in the forms of volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs) generated from producing polymer modified bitumen using five different types of recycled plastics. A comparative analysis of recycled plastic modified bitumen fumes was conducted based on a series of optimized parameters, including working temperatures (160 °C, 180 °C and 200 °C) and polymer contents (1%, 2%, 4% and 6% by weight of bitumen) against neat bitumen and polymer-modified bitumen. Forty-eight volatile organic compounds (VOCs) and sixteen polycyclic aromatic hydrocarbons (PAHs) were quantified using gas chromatography-mass spectrometry (GC-MS). The results from the comparative analysis revealed that the incorporation of recycled plastics could reduce overall emissions from both VOCs and PAHs perspectives. The reduction in emissions can be attributed to the enhancement in thermal stability of the bitumen blend when recycled plastics are added. The reduction rate is heavily dependent on the type and source of recycled plastics used in the blending process. Furthermore, a specific compound concentration analysis of the top-four weighted compounds emitted reveals that the total concentration of emissions can be deceiving as specific compounds can spike when adding recycled plastics in bitumen despite a reduction trend for the overall concentration.

Keywords: Asphalt; Bitumen; Emissions; Fuming; Polycyclic aromatic hydrocarbons; Recycled plastics; Volatile organic compounds.

MeSH terms

  • Gases
  • Humans
  • Hydrocarbons / analysis
  • Plastics / chemistry
  • Polycyclic Aromatic Hydrocarbons* / analysis
  • Volatile Organic Compounds*

Substances

  • Gases
  • Hydrocarbons
  • Plastics
  • Polycyclic Aromatic Hydrocarbons
  • Volatile Organic Compounds
  • asphalt