Metal organic framework/polyelectrolyte composites for water vapor sorption applications

Dalton Trans. 2022 May 10;51(18):7053-7067. doi: 10.1039/d2dt00518b.

Abstract

Metal-organic framework (MOF) core particles of MIL-101(Cr), aluminum fumarate (Basolite® A520), MIL-53-TDC, zirconium fumarate, and UiO-66 were modified by adsorption of thin polyelectrolyte (PE)-based shells without deterioration of their crystal structure. By applying different PEs and depositing a single layer (MOF/PE) or one to three layer-by-layer assembled bilayers (MOF/LbL), the mass percent of shell material in the composite was varied from 0.6-2.5% to 50%. Under a constant relative pressure of water vapor, the moisture uptake by a MOF/PE and a MOF/LbL is rather comparable with its S-shaped curvature to that of pristine MOFs. The relevant differences, such as a shift of the ascending adsorption part to lower/higher relative pressure or an increase/decrease in water uptake in selected regions, are associated with the core-shell structure and related to the morphological changes of the MOF powders. The hydrophilic surface promotes the formation of liquid menisci at the points of contact between particles and accelerates the moisture uptake and loss. A decrease in water sorption under an atmosphere with high humidity by some composites can be associated with the inhibition of liquid water condensation by the more hydrophobic shells.