Anthropogenic aerosols in precipitation over the Indo-Gangetic basin

Environ Geochem Health. 2023 Mar;45(3):961-980. doi: 10.1007/s10653-022-01236-6. Epub 2022 Apr 7.

Abstract

This study investigated the concentration of heavy metals in rainwater (RW) at a semi-arid region of the Indo-Gangetic basin to understand the influence of local, regional, or long-range transport of air pollutants during the monsoon and non-monsoonal rain. The concentration of heavy metals in RW was determined using Atomic Absorption Spectrophotometer with Graphite Furnace, the scavenging ratio was estimated, and source interpretation was carried out using Principle Component Analysis (PCA) and HYSPLIT model. Ca was the highest contributor in RW followed by Na, Fe, Mg, and Al whereas Ba, Cr, Cu, Mn, Ni, Pb, and Zn were found in trace quantity. During the non-monsoon period, the crustal component (Ca) was the highest; however, during the monsoon, sea salt components (Na and Fe) were found higher. The scavenging ratio for metals was estimated and was found many times higher than those reported over European sites. The moderate concentration of heavy metal in RW was found with higher wind from South (S), South-West (SW), and North-West (NW) directions. Air mass back trajectory shows a significant contribution of metals from the Arabian Sea (South-Westerly wind) during active monsoon, whereas, in the non-monsoon season, the air masses mainly originated from the north-west indicating a contribution from wind-blown dust. The correlation analysis has shown the positive correlations between Ca and Mg, Mg and Na, Na and Cu, Al and Zn, Zn and Ba, Ba and Cr, and Cr and Zn. Principal Component Analysis (PCA) indicated loading of Ca, Na, Mg, Cu, Mn, and Ni in the first factor suggesting their crustal origin, whereas the second factor showed high loading of Al, Ba, Zn, Cr, and Ni indicating vehicular exhaust and industrial emission as their major sources, and loading for Ba and Mg in the third factor indicates the mixed contribution from both natural and anthropogenic sources in rainwater during the monsoon and non-monsoon periods. The data of this study can be used in the air pollution transport model. This study will help in source interpretation over the Indo-Gangetic basin and will help in planning for National Clean Air Program (NCAP) and deriving critical load.

Keywords: Heavy metal; Meteorology; Rainwater; Scavenging ratio; Source identification.

MeSH terms

  • Aerosols / analysis
  • Air Pollutants* / analysis
  • Environmental Monitoring
  • Metals, Heavy* / analysis
  • Rain

Substances

  • Metals, Heavy
  • Air Pollutants
  • Aerosols