Stress, Thyroid Dysregulation, and Thyroid Cancer in Children and Adolescents: Proposed Impending Mechanisms

Horm Res Paediatr. 2023;96(1):44-53. doi: 10.1159/000524477. Epub 2022 Apr 6.

Abstract

Stress is a potential catalyst for thyroid dysregulation through cross-communication of the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid (HPT) axes. Stress and stressors exposure motivates molecular mechanisms affecting compound feedback loops of the HPT axis. While there is evidence of connection between stress and thyroid dysregulation, the question whether this connection is implicated in the development of thyroid cancer (TC) remains unanswered. In view of the rising incidence of TC in both adults and children alongside the increasing stress in our modern society, there is a need to understand possible interrelations between stress, thyroid dysregulation, and TC. Prolonged glucocorticoid secretion due to stress interferes with immune system response by altering the cytokines, inducing low-grade chronic inflammation, and suppressing function of immune-protective cells. Chronic inflammation is a risk factor linked to TC. The role of autoimmunity has been a matter of controversy. However, there is epidemiological connection between autoimmune thyroid disease (AITD) and TC; patients with AITD show increased incidence in papillary thyroid carcinoma (PTC), and those with TC show a high prevalence of intrathyroidal lymphocyte infiltration and thyroid autoantibodies. Timing and duration-dependent exposure to specific endocrine disrupting chemicals (EDCs) has an impact on thyroid development, function, and proliferation, leading to thyroid disease and potentially cancer. Thyroid hormone imbalance, chronic inflammation, and EDCs are potential risk factors for oxidative stress. Oxygen free radicals are capable of causing DNA damage via stimulation of the mitogen-activating protein kinase or phosphatidylinositol-3-kinase and/or nuclear factor kB pathways, resulting in TC-associated gene mutations such as RET/PTC, AKAP9-BRAF, NTRK1, RAASF, PIK3CA, and PTEN. Stressful events during the critical periods of prenatal and early life can influence neuroendocrine regulation and induce epigenetic changes. Aberrant methylation of tumor suppressor genes such as P16INK4A, RASSF, and PTEN is associated with PTC; histone H3 acetylation is shown to be higher in TC, and thyroid-specific noncoding RNAs are downregulated in PTC. This review focuses on the above proposed mechanisms that potentially lead to thyroid tumorigenesis with the aim to help in the development of novel prognostic and therapeutic strategies for TC.

Keywords: Endocrine disrupting chemicals; Epigenetic changes; Hypothalamic-pituitary-thyroid axis dysfunction; Inflammatory stress; Thyroid carcinoma.

Publication types

  • Review

MeSH terms

  • Adolescent
  • Adult
  • Child
  • Humans
  • Inflammation
  • Thyroid Cancer, Papillary
  • Thyroid Diseases* / epidemiology
  • Thyroid Neoplasms* / etiology
  • Thyroid Neoplasms* / genetics