Estimation of Emission Factors from Purchased Electricity for European Countries: Impacts on Emission Reduction of Electricity Storage

Environ Sci Technol. 2022 Apr 19;56(8):5111-5122. doi: 10.1021/acs.est.1c06490. Epub 2022 Apr 5.

Abstract

To evaluate the reduction brought about by energy storage technology, it is essential to first have accurate data on carbon emissions from electricity consumption. However, when gathering this data by evaluating marginal emission factors (MEFs), previous research measured only generation emissions and direct transfer emissions while ignoring the impact of embodied emissions from the cross-grid transfer. To gather more accurate data, this study constructs an electricity network composed of 28 European countries in 2019 and compares the difference between the MEFs when considering the network-wide emissions and the MEFs when only considering generation emissions and direct transfer emissions for electricity trade (neglecting the indirect emissions in purchased electricity). Three energy storage strategies are adopted to evaluate the carbon emission reduction benefits of energy storage. The results show that the errors in emission accounting and MEF calculation are 7% and 10%, respectively, if the impact of electricity trade is not taken into account. When disregarding the indirect emissions from electricity trade, the errors in emission accounting and MEF calculation are 1%. Implementing wind curtailment reduction strategies for energy storage systems could effectively reduce electricity carbon emissions, more than 200 gCO2/kWh in most countries with 100% storage efficiency. The accuracy of MEFs has a significant impact on the results of energy storage benefits, and the choice of storage strategies has different effects on electricity emissions in the same country. Our methods have general applicability for other regions and countries.

Keywords: electricity trade; embodied emissions; energy storage; marginal emission factors.