Pumping between phases with a pulsed-fuel molecular ratchet

Nat Nanotechnol. 2022 Jul;17(7):701-707. doi: 10.1038/s41565-022-01097-1. Epub 2022 Apr 4.

Abstract

The sorption of species from a solution into and onto solids underpins the sequestering of waste and pollutants, precious metal recovery, heterogeneous catalysis, analysis and separation science, and other technologies1,2. The transfer between phases tends to proceed spontaneously in the direction of equilibrium. For example, alkyl ammonium groups mounted on silica nanoparticles are used to chemisorb cucurbituril macrocycles from solution through host-guest binding3,4. Molecular ratchet mechanisms5-7, in which kinetic gating8-12 inhibits or accelerates particular steps, makes it possible to progressively drive dynamic systems13-16 away from equilibrium17-21. Here we report on molecular pumps22 immobilized on polymer beads23-25 that use an energy ratchet mechanism5,9,19-21,26-30 to directionally transport substrates from solution onto the beads. On the addition of trichloroacetic acid (CCl3CO2H)19,31-33 fuel19,34-37, micrometre-diameter polystyrene beads functionalized38 with solvent-accessible molecular pumps sequester from the solution crown ethers appended with fluorescent tags. After fuel consumption, the rings are mechanically trapped in a higher-energy, out-of-equilibrium state on the beads and cannot be removed by dilution or exhaustive washing. This differs from dissipative assembled materials11,13-16, which require a continuous supply of energy to persist, and from conventional host-guest complexes. The addition of a second fuel pulse causes the uptake of more macrocycles, which drives the system further away from equilibrium. The second macrocycle can be labelled with a different fluorescent tag, which confers sequence information39 on the absorbed structure. The polymer-bound substrates can be released back to the bulk either one compartment at a time or all at once. Non-equilibrium40 sorption by immobilized artificial molecular machines41-45 enables the transduction of energy from chemical fuels for the use, storage and release of energy and information.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Nanoparticles*
  • Polymers

Substances

  • Polymers