Cortical Spreading Depolarization, Blood Flow, and Cognitive Outcomes in a Closed Head Injury Mouse Model of Traumatic Brain Injury

Neurocrit Care. 2022 Jun;37(Suppl 1):102-111. doi: 10.1007/s12028-022-01474-7. Epub 2022 Apr 4.

Abstract

Background: Cortical spreading depolarizations (CSDs) are associated with worse outcomes in many forms of acute brain injury, including traumatic brain injury (TBI). Animal models could be helpful in developing new therapies or biomarkers to improve outcomes in survivors of TBI. Recently, investigators have observed CSDs in murine models of mild closed head injury (CHI). We designed the currently study to determine additional experimental conditions under which CSDs can be observed, from mild to relatively more severe TBI.

Methods: Adult male C57Bl/6J mice (8-14 weeks old) were anesthetized with isoflurane and subjected to CHI with an 81-g weight drop from 152 or 183 cm. CSDs were detected with minimally invasive visible light optical intrinsic signal imaging. Cerebral blood flow index (CBFi) was measured in the 152-cm drop height cohort using diffuse correlation spectroscopy at baseline before and 4 min after CHI. Cognitive outcomes were assessed at 152- and 183-cm drop heights for the Morris water maze hidden platform, probe, and visible platform tests.

Results: CSDs occurred in 43% (n = 12 of 28) of 152-cm and 58% (n = 15 of 26) of 183-cm drop height CHI mice (p = 0.28). A lower baseline preinjury CBFi was associated with development of CSDs in CHI mice (1.50 ± 0.07 × 10-7 CHI without CSD [CSD-] vs. 1.17 ± 0.04 × 10-7 CHI with CSD [CSD+], p = 0.0001). Furthermore, in CHI mice that developed CSDs, the ratio of post-CHI to pre-CHI CBFi was lower in the hemisphere ipsilateral to a CSD compared with non-CSD hemispheres (0.19 ± 0.07 less in the CSD hemisphere, p = 0.028). At a 152-cm drop height, there were no detectable differences between sham injured (n = 10), CHI CSD+ (n = 12), and CHI CSD- (n = 16) mice on Morris water maze testing at 4 weeks. At a 183-cm drop height, CHI CSD+ mice had worse performance on the hidden platform test at 1-2 weeks versus sham mice (n = 15 CHI CSD+, n = 9 sham, p = 0.045), but there was no appreciable differences compared with CHI CSD- mice (n = 11 CHI CSD-).

Conclusions: The data suggest that a lower baseline cerebral blood flow prior to injury may contribute to the occurrence of a CSD. Furthermore, a CSD at the time of injury can be associated with worse cognitive outcome under the appropriate experimental conditions in a mouse CHI model of TBI.

Keywords: Closed head injury; Cortical spreading depression; Mouse model; Neurocritical care; Traumatic brain injury.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain Concussion*
  • Brain Injuries, Traumatic*
  • Cognition
  • Cortical Spreading Depression* / physiology
  • Disease Models, Animal
  • Head Injuries, Closed*
  • Humans
  • Male
  • Mice
  • Mice, Inbred C57BL