Synthesis, characterization and application of antibacterial lactoferrin nanoparticles

Curr Res Food Sci. 2022 Mar 26:5:642-652. doi: 10.1016/j.crfs.2022.03.009. eCollection 2022.

Abstract

Lactoferrin (L) and gellan gum (G) nanoparticles were produced in different biopolymer proportions through electrostatic complexation to enhance the antimicrobial properties of lactoferrin. The nanoparticles were characterized according to size, charge density, morphology and antimicrobial activity against S. aureus and E. coli, in two different broths to show the effect of the broth composition on the nanoparticle activity. The 9L:1G particles showed the highest positive zeta potential (+21.20 mV) and reduced diameter (92.03 nm) which resulted in a minimum inhibitory concentration six times smaller (0.3 mg/ml) than pure lactoferrin (2 mg/ml). However, the bacteriostatic action of nanoparticles was inhibited in the presence of divalent cations. When applied to strawberries as a coating, lactoferrin nanoparticles extended fruit shelf-life up to 6 days in the presence of carboxymethylcellulose (CMC). Therefore, lactoferrin-gellan gum complexation was proved to be a promising tool to enhance lactoferrin antimicrobial action and broaden its application as a food preserver.

Keywords: Coating; Fruit preservation; Nanoparticle; Particle size; Zeta potential.