C-Cl Oxidative Addition and C-C Reductive Elimination Reactions in the Context of the Rhodium-Promoted Direct Arylation

Organometallics. 2022 Mar 28;41(6):716-732. doi: 10.1021/acs.organomet.1c00643. Epub 2022 Mar 17.

Abstract

A cycle of stoichiometric elemental reactions defining the direct arylation promoted by a redox-pair Rh(I)-Rh(III) is reported. Starting from the rhodium(I)-aryl complex RhPh{κ3-P,O,P-[xant(PiPr2)2]} (xant(PiPr2)2 = 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene), the reactions include C-Cl oxidative addition of organic chlorides, halide abstraction from the resulting six-coordinate rhodium(III) derivatives, C-C reductive coupling between the initial aryl ligand and the added organic group, oxidative addition of a C-H bond of a new arene, and deprotonation of the generated hydride-rhodium(III)-aryl species to form a new rhodium(I)-aryl derivative. In this context, the kinetics of the oxidative additions of 2-chloropyridine, chlorobenzene, benzyl chloride, and dichloromethane to RhPh{κ3-P,O,P-[xant(PiPr2)2]} and the C-C reductive eliminations of biphenyl and benzylbenzene from [RhPh23-P,O,P-[xant(PiPr2)2]}]BF4 and [RhPh(CH2Ph){κ3-P,O,P-[xant(PiPr2)2]}]BF4, respectively, have been studied. The oxidative additions generally involve the cis addition of the C-Cl bond of the organic chloride to the rhodium(I) complex, being kinetically controlled by the C-Cl bond dissociation energy; the weakest C-Cl bond is faster added. The C-C reductive elimination is kinetically governed by the dissociation energy of the formed bond. The C(sp3)-C(sp2) coupling to give benzylbenzene is faster than the C(sp2)-C(sp2) bond formation to afford biphenyl. In spite of that a most demanding orientation requirement is needed for the C(sp3)-C(sp2) coupling than for the C(sp2)-C(sp2) bond formation, the energetic effort for the pregeneration of the C(sp3)-C(sp2) bond is lower. As a result, the weakest C-C bond is formed faster.