Graphene oxide enhances thermal stability and microwave absorption/regeneration of a porous polymer

J Hazard Mater. 2022 Jul 5:433:128792. doi: 10.1016/j.jhazmat.2022.128792. Epub 2022 Mar 26.

Abstract

Microwave regeneration of adsorbents offers several advantages over conventional regeneration methods; however, its application for microwave transparent adsorbents such as polymers is challenging. In this study, hypercrosslinked polymer/graphene oxide (GO) nanocomposites with large surface area and enhanced microwave absorption ability were synthesized. Polymers of 4, 4´-bis ((chloromethyl)-1, 1´-biphenyl- benzyl chloride) were hypercrosslinked through the Friedel-Crafts reactions. GO sheets were synthesized through the Hummer's method. Nanocomposites with different GO contents (1-8 wt%) were synthesized by solution mixing method. Thermogravimetry analysis revealed a large enhancement in the thermal stability of GO-filled nanocomposites compared to pristine polymer. N2 adsorption isotherm analysis showed 7% and 10% reduction in BET surface area and total pore volume of the nanocomposite with 8 wt% GO. Compared to the pristine polymer, the dielectric constant and dielectric loss factor increased from 5 to 17 and 0.05-1.6, respectively, for the nanocomposites with 8 wt% GO. Microwave-assisted desorption of toluene from samples revealed more than 160 ºC and 4 times improvement in the desorption temperature and desorption efficiency, respectively, by addition of 4 wt% GO to the polymer. This study showed the important role of GO addition for efficient microwave-assisted regeneration of polymer adsorbents.

Keywords: Graphene oxide; Microwave Absorption; Polymers; Volatile organic compound, Adsorption.