Deciphering the mechanisms of HPV E6 mutations in the destabilization of E6/E6AP/p53 complex

Biophys J. 2022 May 3;121(9):1704-1714. doi: 10.1016/j.bpj.2022.03.030. Epub 2022 Mar 29.

Abstract

In epithelial tumors, oncoprotein E6 binds with the ubiquitin ligase E6AP to form E6/E6AP heterodimer; then this heterodimer recruits p53 to form E6/E6AP/p53 heterotrimer and induces p53 degradation. Recent experiments demonstrated that three E6 single-site mutants (F47R, R102A, and L50E) can inhibit the E6/E6AP/p53 heterotrimer formation and rescue p53 from the degradation pathway. However, the molecular mechanism underlying mutation-induced heterotrimer inhibition remains largely elusive. Herein, we performed extensive molecular dynamics simulations (totally ∼13 μs) on both heterodimer and heterotrimer to elucidate at an atomic level how each p53-degradation-defective HPV16 E6 mutant reduces the structural stabilities of the two complexes. Our simulations reveal that the three E6 mutations destabilize the structure of E6/E6AP/p53 complex through distinct mechanisms. Although F47RE6 mutation has no effect on the structure of E6/E6AP heterodimer, it results in an electrostatic repulsion between R47E6 and R290p53, which is unfavorable for E6-p53 binding. R102AE6 mutation destabilizes the structure of E6/E6AP heterodimer and significantly disrupts hydrophobic and cation-π interactions between F47E6 and E286p53/L298p53/R290p53. L50EE6 mutation impairs both E6 interdomain interactions (especially F47-K108 cation-π interaction) and E6-E6AP intermolecular interactions important for the stabilization of E6/E6AP heterodimer. This study identifies the intra- and intermolecular interactions crucial for the complex stability, which may provide mechanistic insights into the inhibition of complex formation by the three HPV16 E6 mutations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Mutation
  • Oncogene Proteins, Viral* / chemistry
  • Papillomavirus Infections*
  • Protein Binding
  • Tumor Suppressor Protein p53 / metabolism
  • Ubiquitin / metabolism
  • Ubiquitin-Protein Ligases / genetics
  • Ubiquitin-Protein Ligases / metabolism

Substances

  • Oncogene Proteins, Viral
  • Tumor Suppressor Protein p53
  • Ubiquitin
  • Ubiquitin-Protein Ligases