Molecular Mechanisms of Resistance to Tyrosine Kinase Inhibitors Associated with Hepatocellular Carcinoma

Curr Cancer Drug Targets. 2022;22(6):454-462. doi: 10.2174/1568009622666220330151725.

Abstract

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death, which can be attributed to the high incidence and first diagnosis at an advanced stage. Tyrosine kinase inhibitors (TKIs), a class of small-molecule targeting drugs, are primarily used for the clinical treatment of HCC after chemotherapy because they show significant clinical efficacy and low incidence of clinical adverse reactions. However, resistance to sorafenib and other TKIs, which can be used to treat advanced HCC, poses a significant challenge. Recent mechanistic studies have shown that epithelial-mesenchymal transition or transformation (EMT), ATP binding cassette (ABC) transporters, hypoxia, autophagy, and angiogenesis are involved in apoptosis, angiogenesis, HCC cell proliferation, and TKI resistance in patients with HCC. Exploring and overcoming such resistance mechanisms is essential to extend the therapeutic benefits of TKIs to patients with TKI-resistant HCC. This review aims to summarize the potential resistance mechanism proposed in recent years and methods to reverse TKI resistance in the context of HCC.

Keywords: Hepatocellular carcinoma; molecular mechanisms; resistance mechanisms; sorafenib; target proteins; tyrosine kinase inhibitors.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents* / pharmacology
  • Antineoplastic Agents* / therapeutic use
  • Carcinoma, Hepatocellular* / pathology
  • Cell Line, Tumor
  • Drug Resistance, Neoplasm
  • Humans
  • Liver Neoplasms* / pathology
  • Protein Kinase Inhibitors / metabolism
  • Protein Kinase Inhibitors / pharmacology
  • Protein Kinase Inhibitors / therapeutic use

Substances

  • Antineoplastic Agents
  • Protein Kinase Inhibitors