Dietary Fibre Supplementation Improves Semen Production by Increasing Leydig Cells and Testosterone Synthesis in a Growing Boar Model

Front Vet Sci. 2022 Mar 11:9:850685. doi: 10.3389/fvets.2022.850685. eCollection 2022.

Abstract

Testicular development is imperative to spermatogenesis, and pre-puberty is the key period for testis development. This study, therefore, investigated the effects of fibre supplementation on testis development and its possible mechanism in a growing boar model. Thirty Yorkshire boars were randomly divided into a control group (Control) and a fibre group (Fibre) from day 0 to 90 after weaning, with three pigs per pen and five pens per treatment. Blood and testes were collected for analysis. Dietary fibre supplementation had no significant effect on growth performance, testicular volume, or libido but increased the semen production of boars. Boars fed with fibre had lower serum cholesterol (CHO) and low-density lipoprotein (LDL) levels compared to those on the Control diet; however, testicular CHO, triglyceride (TG), and LDL concentration in the Fibre group were significantly higher than the Control group (P < 0.01). Testicular histological analysis showed that seminiferous tubules and testicular germ cells of 120-day-old boars were densely arranged in the Fibre group, and the number of Leydig cells was significantly higher than that of the Control group (P < 0.001). Furthermore, the diet supplemented with fibre significantly decreased leptin, leptin receptor (Leptor), and luteinising hormone (LH) concentrations in boar serum (P < 0.05), whereas follicle-stimulating hormone (FSH) and testosterone concentrations were significantly increased (P < 0.05). Meanwhile, the expression of AMH, AMHR2, and SYCP3 genes related to proliferation and differentiation, and hormone-related genes STAR and SOCS3, were significantly up-regulated (P < 0.05). OCCLUDIN expression was up-regulated, whereas CDH2 expression was down-regulated. In conclusion, increased fibre intake during the pre-puberty period in growing boar is crucial for Leydig cell proliferation, up-regulating the expression of genes related to hormone synthesis and thereby promoting the secretion of testosterone and semen production.

Keywords: Leydig cells; boar; fibre; spermatogenesis; testosterone.