Pyrene-Bridged Expanded Carbaporphyrin Nanobelts

J Am Chem Soc. 2022 Jun 1;144(21):9212-9216. doi: 10.1021/jacs.2c01605. Epub 2022 Mar 31.

Abstract

Two belt-like expanded carbaporphyrins (NB1 and NB2) were prepared via a one-pot procedure that involves a [6 + 3] condensation between a pyrene-bearing tetrapyrrole precursor (2) and pentafluorobenzaldehyde, followed by oxidation. Single crystal X-ray diffraction analyses revealed that NB1 and NB2 both contain six dipyrromethene moieties and three bridging pyrene units. In the structure of NB1, there are two vertically orientated pyrene units and one transverse orientated pyrene unit; however, in NB2 all three pyrene units are vertically orientated. The structural differences between NB1 and NB2 are reflected in their respective physical properties as revealed by proton NMR, UV-vis, and fluorescence spectroscopies. In contrast to all-carbon nanobelts, NB1 and NB2 contain multiple pyrrolic nitrogen donors that could serve as potential metal coordination sites. As a test of this possibility, NB2 was used to prepare an unprecedented Zn complex containing 7 Zn2+ metal centers connected by a network of bridging atoms, as confirmed by a single crystal X-ray diffraction analysis. To the best of our knowledge, this is the first example of a belt-like molecular system that can coordinate multiple metal ions both along the backbone and within its central cavity.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Crystallography, X-Ray
  • Pyrenes*
  • Spectrometry, Fluorescence

Substances

  • Pyrenes