Electro-optic characteristics of stabilized cholesteric liquid crystals with non-liquid crystalline polymer networks

Soft Matter. 2022 Apr 13;18(15):3013-3018. doi: 10.1039/d2sm00203e.

Abstract

Extensive prior research has explored the stabilization of the CLC phase with polymer networks. These prior efforts have demonstrated both tunable and switchable electro-optic reconfiguration of the selective reflection of the CLC phase. Recently, we and other groups have detailed that polymer stabilization of the CLC phase with liquid crystalline monomers retains "structural" chirality (e.g., the chiral phase templates the morphology of the achiral polymer network). Here, we demonstrate that structural chirality can be retained in aliphatic, non-liquid crystalline monomers. PSCLCs prepared by photoinitiated polymerization of aliphatic polymer networks exhibit reversible electro-optic responses. Facilitated by the retention of structural chirality in aliphatic stabilizing polymer networks, we explore the role of surface affinity and crosslink density in the transfer of structural chirality to the liquid crystal media.