A Micropatterning Assay for Measuring Cell Chirality

J Vis Exp. 2022 Mar 11:(181):10.3791/63105. doi: 10.3791/63105.

Abstract

Chirality is an intrinsic cellular property, which depicts the asymmetry in terms of polarization along the left-right axis of the cell. As this unique property attracts increasing attention due to its important roles in both development and disease, a standardized quantification method for characterizing cell chirality would advance research and potential applications. In this protocol, we describe a multicellular chirality characterization assay that utilizes micropatterned arrays of cells. Cellular micropatterns are fabricated on titanium/gold-coated glass slides via microcontact printing. After seeding on the geometrically defined (e.g., ring-shaped), protein-coated islands, cells directionally migrate and form a biased alignment toward either the clockwise or the counterclockwise direction, which can be automatically analyzed and quantified by a custom-written MATLAB program. Here we describe in detail the fabrication of micropatterned substrates, cell seeding, image collection, and data analysis and show representative results obtained using the NIH/3T3 cells. This protocol has previously been validated in multiple published studies and is an efficient and reliable tool for studying cell chirality in vitro.

Publication types

  • Video-Audio Media

MeSH terms

  • Animals
  • Biophysical Phenomena
  • Cell Polarity* / physiology
  • Mice
  • Models, Biological