Genetic Population Structure of Summer Flounder Paralichthys dentatus using Microsatellite DNA Analysis

Fish Res. 2022 Jun:250:106270. doi: 10.1016/j.fishres.2022.106270. Epub 2022 Feb 12.

Abstract

Summer flounder Paralichthys dentatus supports one of the most valuable commercial and recreational fisheries along the Atlantic Coast of the U.S. However, in recent decades the management of this species has proven to be one of the most contentious for any exploited marine resource in the region. A coastwide catch quota is imposed annually for summer flounder of which 60% is allocated to the commercial fishery and 40% to the recreational fishery. The allocation is further divided among the individual coastal states from North Carolina to Massachusetts based on their landings in the 1980s. This process, based on political jurisdictions, does not consider the species' biological stock structure. Previous genetic studies (allozyme, mtDNA, and SNPs) provided contradictory results regarding the possible population structure of summer. To address this issue, we used DNA microsatellite analysis at 9 loci to define the coastwide population structure of summer flounder. In total, 1,182 specimens were analyzed from 18 collection sites. Most collections were from the continental shelf during the fall-winter spawning season. These were supplemented with additional samples from inshore waters from North Carolina to Florida, and inshore sites which support significant recreational fisheries at Nantucket Shoals, Massachusetts and Fire Island, New York. The overall level of genetic differentiation in pairwise comparison between collections was very low, mean F ST = 0.001. There was no evidence of genetic differentiation between collections from north and south of Cape Hatteras. Our microsatellite results are consistent with an earlier SNP study which failed to find significant allelic heterogeneity among coastwide collections of summer flounder. However, a subset of pairwise F ST comparisons between some collections proved statistically significant. Furthermore, in STRUCTURE analysis we found evidence of two genetic clusters within the species' northern landings area, however, this finding was not supported by DPAC analysis. We conclude that summer flounder most likely constitute a single population along their entire Atlantic Coast distribution.

Keywords: Genetic Differentiation; Genetic Population Structure; Global Warming; Marine Fisheries Management.