E2 and Gamma distributions in polygonal networks

Phys Rev Res. 2021 Oct-Dec;3(4):L042001. doi: 10.1103/physrevresearch.3.l042001. Epub 2021 Oct 5.

Abstract

From solar supergranulation to salt flat in Bolivia, from veins on leaves to cells on Drosophila wing discs, polygon-based networks exhibit great complexities, yet similarities and consistent patterns emerge. Based on analysis of 99 polygonal tessellations of a wide variety of physical origins, this work demonstrates the ubiquity of an exponential distribution in the squared norm of the deformation tensor, E2, which directly leads to the ubiquitous presence of Gamma distributions in polygon aspect ratio as recently demonstrated by Atia et al. [Nat. Phys. 14, 613 (2018)]. In turn an analytical approach is developed to illustrate its origin. E2 relates to most energy forms, and its Boltzmann-like feature allows the definition of a pseudo-temperature that promises utility in a thermodynamic ensemble framework.