Attention-Based Temporal-Frequency Aggregation for Speaker Verification

Sensors (Basel). 2022 Mar 10;22(6):2147. doi: 10.3390/s22062147.

Abstract

Convolutional neural networks (CNNs) have significantly promoted the development of speaker verification (SV) systems because of their powerful deep feature learning capability. In CNN-based SV systems, utterance-level aggregation is an important component, and it compresses the frame-level features generated by the CNN frontend into an utterance-level representation. However, most of the existing aggregation methods aggregate the extracted features across time and cannot capture the speaker-dependent information contained in the frequency domain. To handle this problem, this paper proposes a novel attention-based frequency aggregation method, which focuses on the key frequency bands that provide more information for utterance-level representation. Meanwhile, two more effective temporal-frequency aggregation methods are proposed in combination with the existing temporal aggregation methods. The two proposed methods can capture the speaker-dependent information contained in both the time domain and frequency domain of frame-level features, thus improving the discriminability of speaker embedding. Besides, a powerful CNN-based SV system is developed and evaluated on the TIMIT and Voxceleb datasets. The experimental results indicate that the CNN-based SV system using the temporal-frequency aggregation method achieves a superior equal error rate of 5.96% on Voxceleb compared with the state-of-the-art baseline models.

Keywords: convolutional neural networks; self-attention; speaker verification; temporal-frequency aggregation.

MeSH terms

  • Neural Networks, Computer*