The Short-Range, High-Accuracy Compact Pulsed Laser Ranging System

Sensors (Basel). 2022 Mar 10;22(6):2146. doi: 10.3390/s22062146.

Abstract

A short-range, compact, real-time pulsed laser rangefinder is constructed based on pulsed time-of-flight (ToF) method. In order to reduce timing discrimination error and achieve high ranging accuracy, gray-value distance correction and temperature correction are proposed, and are realized with a field programmable gate array (FPGA) in a real-time application. The ranging performances-such as the maximum ranging distance, the range standard deviation, and the ranging accuracy-are theoretically calculated and experimentally studied. By means of these proposed correction methods, the verification experimental results show that the achievable effective ranging distance can be up to 8.08 m with a ranging accuracy of less than ±11 mm. The improved performance shows that the designed laser rangefinder can satisfy on-line ranging applications with high precision, fast ranging speed, small size, and low implementation cost, and thus has potential in the areas of robotics, manufacturing, and autonomous navigation.

Keywords: FPGA; gray-value distance correction; laser ranging; obstacle-avoiding; temperature correction; time-of-flight (ToF).