Low-Temperature Biodegradation of Lignin-Derived Aromatic Model Monomers by the Cold-Adapted Yeast Rhodosporidiobolus colostri Isolated from Alpine Forest Soil

Microorganisms. 2022 Feb 26;10(3):515. doi: 10.3390/microorganisms10030515.

Abstract

The contribution of cold-adapted yeasts to the emerging field of lignin biovalorization has not yet been studied. The red-pigmented basidiomycetous yeast strain Rhodosporidiobolus colostri DBVPG 10655 was examined for its potential to degrade five selected lignin-derived aromatic monomers (syringic acid, p-coumaric acid, 4-hydroxybenzoic acid, ferulic acid, and vanillic acid). The strain utilized p-coumaric acid, 4-hydroxybenzoic acid, and ferulic acid not only as the sole carbon source; full biodegradation occurred also in mixtures of multiple monomers. Vanillic acid was not utilized as the sole carbon source, but was degraded in the presence of p-coumaric acid, 4-hydroxybenzoic acid, and ferulic acid. Syringic acid was utilized neither as the sole carbon source nor in mixtures of compounds. Biodegradation of lignin-derived aromatic monomers was detected over a broad temperature range (1-25 °C), which is of ecological significance and of biotechnological relevance.

Keywords: 4-hydroxybenzoic acid; Rhodosporidiobolus colostri; biodegradation; cold-adapted; ferulic acid; lignin-derived aromatic monomers; p-coumaric acid; vanillic acid; yeast.