A Novel Planar Grounded Capacitively Coupled Contactless Conductivity Detector for Microchip Electrophoresis

Micromachines (Basel). 2022 Feb 28;13(3):394. doi: 10.3390/mi13030394.

Abstract

In the microchip electrophoresis with capacitively coupled contactless conductivity detection, the stray capacitance of the detector causes high background noise, which seriously affects the sensitivity and stability of the detection system. To reduce the effect, a novel design of planar grounded capacitively coupled contactless conductivity detector (PG-C4D) based on printed circuit board (PCB) is proposed. The entire circuit plane except the sensing electrodes is covered by the ground electrode, greatly reducing the stray capacitance. The efficacy of the design has been verified by the electrical field simulation and the electrophoresis detection experiments of inorganic ions. The baseline intensity of the PG-C4D was less than 1/6 of that of the traditional C4D. The PG-C4D with the new design also demonstrated a good repeatability of migration time, peak area, and peak height (n = 5, relative standard deviation, RSD ≤ 0.3%, 3%, and 4%, respectively), and good linear coefficients within the range of 0.05-0.75 mM (R2 ≥ 0.986). The detection sensitivity of K+, Na+, and Li+ reached 0.05, 0.1, and 0.1 mM respectively. Those results prove that the new design is an effective and economical approach which can improve sensitivity and repeatability of a PCB based PG-C4D, which indicate a great application potential in agricultural and environmental monitoring.

Keywords: capacitively coupled contactless conductivity detection; microchip electrophoresis; planar grounded electrode; stray capacitance.