Social integration influences fitness in allied male dolphins

Curr Biol. 2022 Apr 11;32(7):1664-1669.e3. doi: 10.1016/j.cub.2022.03.027. Epub 2022 Mar 24.

Abstract

Understanding determinants of differential reproductive success is at the core of evolutionary biology because of its connection to fitness. Early work has linked variation in reproductive success to differences in age,1 rank,2 or size,3,4 as well as habitat characteristics.5 More recently, studies in group-living taxa have revealed that social relationships also have measurable effects on fitness.6-8 The influence of social bonds on fitness is particularly interesting in males who compete over reproductive opportunities. In Shark Bay, Western Australia, groups of 4-14 unrelated male bottlenose dolphins cooperate in second-order alliances to compete with rival alliances over access to females.9-12 Nested within second-order alliances, pairs or trios of males, which can vary in composition, form first-order alliances to herd estrus females. Using 30 years of behavioral data, we examined how individual social factors, such as first-order alliance stability, social connectivity, and variation in social bond strength within second-order alliances, affect male fitness. Analyzing the reproductive careers of 85 males belonging to 10 second-order alliances, we found that the number of paternities a male achieved was positively correlated with his cumulative social bond strength but negatively correlated with his variation in bond strength. Thus, well-integrated males with more homogeneous social bonds to second-order allies obtained most paternities. Our findings provide novel insights into the fitness benefits of polyadic cooperation among unrelated males and highlight the adaptive value of social bonds in this context.

Keywords: alliances; bottlenose dolphins; fitness; polyadic cooperation; reproductive success; social bonds.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cooperative Behavior*
  • Dolphins*
  • Female
  • Male
  • Social Behavior
  • Social Integration