Exploiting the Synergy between Concentrated Polymer Brushes and Laser Surface Texturing to Achieve Durable Superlubricity

ACS Appl Mater Interfaces. 2022 Apr 6;14(13):15818-15829. doi: 10.1021/acsami.2c00725. Epub 2022 Mar 25.

Abstract

Friction continues to account for the bulk of energy losses in mechanical systems, with an estimated 23% of the world's total energy consumption used to overcome friction. Concentrated polymer brushes (CPBs) have recently attracted significant scientific and industrial attention, given their ability to achieve superlubricity (i.e., coefficients of friction below 0.01); however, understanding the mechanistic interactions underlying their wear performance has been largely overlooked. Herein, we employ a custom-built optical test apparatus to investigate the inter-dependencies between CPBs and laser-produced surface texture (LST), assessing for the first time the friction, film thickness, and wear behavior in situ and simultaneously. Recent developments in picosecond laser etching allowed us to graft CPBs atop the finest laser-etched matrix of micron-sized dimples reported in literature to date. At low sliding speeds, combined CPB-LST reduces the coefficient of friction to 0.0006, while increasing the CPB durability by up to 34% through a lateral support mechanism offered by the textured micro-features. Furthermore, the imaging results shed light on CPB failure mechanisms. Both these mechanisms of lateral support and failure propagation impact the wear resistance of CPBs and are important in the development of CPBs for future applications (e.g., in low-speed bearings functioning under controlled abrasive wear conditions).

Keywords: film thickness; laser surface texturing; polymer brushes; sliding friction; superlubricity.