Effect of Ultraviolet Light C (UV-C) Radiation Generated by Semiconductor Light Sources on Human Beta-Coronaviruses' Inactivation

Materials (Basel). 2022 Mar 20;15(6):2302. doi: 10.3390/ma15062302.

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has completely disrupted people’s lives. All over the world, many restrictions and precautions have been introduced to reduce the spread of coronavirus disease 2019 (COVID-19). Ultraviolet C (UV-C) radiation is widely used to disinfect rooms, surfaces, and medical tools; however, this paper presents novel results obtained for modern UV-C light-emitting diodes (LEDs), examining their effect on inhibiting the multiplication of viruses. The main goal of the work was to investigate how to most effectively use UV-C LEDs to inactivate viruses. We showed that UV-C radiation operating at a 275 nm wavelength is optimal for germicidal effectiveness in a time exposure (25−48 s) study: >3 log-reduction with the Kärber method and >6 log-reduction with UV spectrophotometry were noted. We used real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) to reliably estimate virus infectivity reduction after 275 nm UV-C disinfection. The relative quantification (RQ) of infectious particles detected after 40−48 s distinctly decreased. The irradiated viral RNAs were underexpressed compared to the untreated control virial amplicon (estimated as RQ = 1). In conclusion, this work provides the first experimental data on 275 nm UV-C in the inactivation of human coronavirus OC43 (HoV-OC43), showing the most potent germicidal effect without hazardous effect.

Keywords: coronavirus disease 2019 (COVID-19); human coronavirus OC43 (HCoV-OC43); light-emitting diode (LED); severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); ultraviolet C (UV-C); virus inactivation.