Photoinduced Oxidation of Lipid Membranes in the Presence of the Nonsteroidal Anti-Inflammatory Drug Ketoprofen

Membranes (Basel). 2022 Feb 22;12(3):251. doi: 10.3390/membranes12030251.

Abstract

The damage of cell membranes induced by photosensitive drugs has attracted the significant attention of researchers in various fields of medicine. Ketoprofen (KP) is known to be the most photosensitive among the nonsteroidal anti-inflammatory drugs. The phototoxic side effects of KP and other non-steroidal anti-inflammatory drugs are associated with the action of free radicals, but there is insufficient information about the nature of these radicals. In the present study, free radicals formed upon KP irradiation within lipid membranes were studied using nuclear magnetic resonance (NMR) and chemically induced dynamic nuclear polarization (CIDNP) methods, as well as a molecular dynamics simulation. Our study confirmed the effective penetration of KP into the lipid bilayer and showed a significant effect of the nature of the medium on the photolysis mechanism. While, in a homogeneous solution, the main channel of KP photolysis is free radical-mediated monomolecular decomposition with formation of radical pairs of benzyl and CO2H radicals, then, in the lipid membrane, the reaction route shifts towards the bimolecular reaction of KP photoreduction. In addition, the effect of the presence an electron donor (the amino acid tryptophan) on lipid oxidation has been studied. It was found that photoreaction of KP with tryptophan proceeds more efficiently than with lipid molecules.

Keywords: CIDNP; decarboxylation; free radicals; ketoprofen; lipid membranes; molecular dynamics; photosensitivity; phototoxicity; radical polymerization.