Preparation and related properties of melanin iron supplement

Food Funct. 2022 Apr 4;13(7):4009-4022. doi: 10.1039/d1fo03293c.

Abstract

In this study, BM-Fe (black sesame melanin-iron complex) was prepared and characterized. The results showed that the carboxyl hydroxyl group of BSM (black sesame melanin) participated in the chelation of iron ions. EDS (energy dispersive spectroscopy) and XPS (X-ray photoelectron spectroscopy) results confirmed the presence of iron ions in BM-Fe. The results of DLS (dynamic light scattering) showed that the average particle sizes of BSM and BM-Fe were 844.9 nm and 294.3 nm, respectively, indicating that the structure of BM-Fe with a smaller particle size was formed after the binding of iron ions with the active group on BSM. Finally, the in vitro iron dissolution, iron ion identification, in vitro iron ion reduction, antioxidant activity, cytotoxicity and moisture resistance properties of BM-Fe and FST (ferrous sulfate tablets, a commonly used iron supplement) were comprehensively compared. The results showed that BSM combined with iron instead of physically mixing, and BM-Fe was easily reduced in the gastrointestinal environment. BM-Fe had good bioavailability and retained the excellent characteristics (such as oxidation resistance and biocompatibility) of BSM, and had the potential to be applied in the treatment of iron-deficiency-related diseases. In summary, BM-Fe prepared in this study not only retained the excellent characteristics of BSM but also had a good effect on iron supplementation, high bioavailability and low side effects. Comprehensive analysis showed that the performance of BM-Fe prepared in this study was similar to or even better than that of the control (FST). Thus, BM-Fe is expected to become a new comprehensive multi-functional iron supplement and has a broad developmental prospect.

MeSH terms

  • Biological Availability
  • Hydroxyl Radical / chemistry
  • Iron* / metabolism
  • Melanins* / metabolism
  • Photoelectron Spectroscopy

Substances

  • Melanins
  • Hydroxyl Radical
  • Iron