Fabrication and characterization of a pro-angiogenic hydrogel derived from the human placenta

Biomater Sci. 2022 Apr 12;10(8):2062-2075. doi: 10.1039/d1bm01891d.

Abstract

Various hydrogels derived from the xenogeneic extracellular matrix (ECM) have been utilised to promote the repair and reconstruction of numerous tissues; however, there are few studies on hydrogels derived from allogeneic specimens. Human placenta derived hydrogels have been used in the therapy of ischaemic myocardium; however, their physicochemical properties and effects on cellular behaviour remain elusive. As the human placenta retains pro-angiogenic growth factors, it is hypothesized that the placenta hydrogels possess the potential to improve angiogenesis. In this study, a soluble decellularized human placenta matrix generated using a modified method could be stored in a powder form and could be used to form a hydrogel in vitro. Effective decellularization was evaluated by analysing the DNA content and histology images. The placenta hydrogel exhibited a fibrous porous morphology and was injectable. Fourier transform infrared (FTIR) spectroscopy revealed that the placenta hydrogel contained both collagen and sulfated glycosaminoglycans (GAGs). In addition, immunofluorescence imaging and enzyme-linked immunosorbent assay (ELISA) showed that the placenta hydrogel retained pro-angiogenic growth factors, including VEGF and bFGF, and transforming growth factor-β1 (TGF-β1). Further in vitro and in vivo analyses confirmed that the placenta hydrogel exerted better pro-angiogenic effects than a collagen type I hydrogel. Histological data also showed that the placenta hydrogels did not elicit a grave inflammatory response. In conclusion, the results suggest that placenta hydrogels may be deemed an attractive scaffold for regenerative medicine applications, especially in promoting vessel formation.

MeSH terms

  • Extracellular Matrix* / metabolism
  • Female
  • Humans
  • Hydrogels* / chemistry
  • Placenta
  • Pregnancy

Substances

  • Hydrogels