Comparisons of Ribonuclease HI Homologs and Mutants Uncover a Multistate Model for Substrate Recognition

J Am Chem Soc. 2022 Mar 30;144(12):5342-5349. doi: 10.1021/jacs.1c11897. Epub 2022 Mar 21.

Abstract

Ribonuclease HI (RNHI) nonspecifically cleaves the RNA strand of RNA:DNA hybrid duplexes in a myriad of biological processes. Several RNHI homologs contain an extended domain, termed the handle region, which is critical to substrate binding. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations have suggested a kinetic model in which the handle region can exist in open (substrate-binding competent) or closed (substrate-binding incompetent) states in homologs containing arginine or lysine at position 88 (using sequence numbering of E. coli RNHI), while the handle region populates states intermediate between the open and closed conformers in homologs with asparagine at residue 88 [Stafford, K. A., et al., PLoS Comput. Biol. 2013, 9, 1-10]. NMR parameters characterizing handle region dynamics are highly correlated with enzymatic activity for RNHI homologs with two-state (open/closed) handle regions [Martin, J. A., et al., Biochemistry 2020, 59, 3201-3205]. The work presented herein shows that homologs containing asparagine 88 display distinct structural features compared with their counterparts containing arginine or lysine 88. Comparisons of RNHI homologs and site-directed mutants with asparagine 88 support a kinetic model for handle region dynamics that includes 12 unique transitions between eight conformations. Overall, these findings present an example of the structure-function relationships of enzymes and spotlight the use of NMR spectroscopy and MD simulations in uncovering fine details of conformational preferences.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Arginine
  • Asparagine*
  • Escherichia coli* / metabolism
  • Lysine
  • RNA
  • Ribonuclease H / chemistry
  • Ribonuclease H / genetics
  • Ribonuclease H / metabolism

Substances

  • RNA
  • Asparagine
  • Arginine
  • Ribonuclease H
  • ribonuclease HI
  • Lysine