Increased Butyrate Production in Clostridium saccharoperbutylacetonicum from Lignocellulose-Derived Sugars

Appl Environ Microbiol. 2022 Apr 12;88(7):e0241921. doi: 10.1128/aem.02419-21. Epub 2022 Mar 21.

Abstract

Butyrate is produced by chemical synthesis based on crude oil, produced by microbial fermentation, or extracted from animal fats (M. Dwidar, J.-Y. Park, R. J. Mitchell, and B.-I. Sang, The Scientific World Journal, 2012:471417, 2012, https://doi.org/10.1100/2012/471417). Butyrate production by anaerobic bacteria is highly favorable since waste or sustainable resources can be used as the substrates. For this purpose, the native hyper-butanol producer Clostridium saccharoperbutylacetonicum N1-4(HMT) was used as a chassis strain due to its broad substrate spectrum. BLASTp analysis of the predicted proteome of C. saccharoperbutylacetonicum N1-4(HMT) resulted in the identification of gene products potentially involved in acetone-butanol-ethanol (ABE) fermentation. Their participation in ABE fermentation was either confirmed or disproven by the parallel production of acids or solvents and the respective transcript levels obtained by transcriptome analysis of this strain. The genes encoding phosphotransacetylase (pta) and butyraldehyde dehydrogenase (bld) were deleted to reduce acetate and alcohol formation. The genes located in the butyryl-CoA synthesis (bcs) operon encoding crotonase, butyryl-CoA dehydrogenase with electron-transferring protein subunits α and β, and 3-hydroxybutyryl-CoA dehydrogenase were overexpressed to channel the flux further towards butyrate formation. Thereby, the native hyper-butanol producer C. saccharoperbutylacetonicum N1-4(HMT) was converted into the hyper-butyrate producer C. saccharoperbutylacetonicum ΔbldΔpta [pMTL83151_BCS_PbgaL]. The transcription pattern following deletion and overexpression was characterized by a second transcriptomic study, revealing partial compensation for the deletion. Furthermore, this strain was characterized in pH-controlled fermentations with either glucose or Excello, a substrate yielded from spruce biomass. Butyrate was the main product, with maximum butyrate concentrations of 11.7 g·L-1 and 14.3 g·L-1, respectively. Minimal amounts of by-products were detected. IMPORTANCE Platform chemicals such as butyrate are usually produced chemically from crude oil, resulting in the carry-over of harmful compounds. The selective production of butyrate using sustainable resources or waste without harmful by-products can be achieved by bacteria such as clostridia. The hyper-butanol producer Clostridium saccharoperbutylacetonicum N1-4(HMT) was converted into a hyper-butyrate producer. Butyrate production with very small amounts of by-products was established with glucose and the sustainable lignocellulosic sugar substrate Excello extracted from spruce biomass by the biorefinery Borregaard (Sarpsborg, Norway).

Keywords: Clostridium saccharoperbutylacetonicum; Excello; butyrate; fermentation; lignocellulosic sugars; metabolic engineering; solvents; transcriptome analysis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 1-Butanol / metabolism
  • Acetone / metabolism
  • Butanols / metabolism
  • Butyrates* / metabolism
  • Clostridium / genetics
  • Clostridium / metabolism
  • Ethanol / metabolism
  • Fermentation
  • Glucose / metabolism
  • Lignin
  • Petroleum* / metabolism
  • Sugars / metabolism

Substances

  • Butanols
  • Butyrates
  • Petroleum
  • Sugars
  • lignocellulose
  • Acetone
  • Ethanol
  • 1-Butanol
  • Lignin
  • Glucose

Supplementary concepts

  • Clostridium saccharoperbutylacetonicum