A nanoconcrete welding strategy for constructing high-performance wound dressing

Bioact Mater. 2021 Dec 18:14:31-41. doi: 10.1016/j.bioactmat.2021.12.014. eCollection 2022 Aug.

Abstract

Engineering biomaterials to meet specific biomedical applications raises high requirements of mechanical performances, and simultaneous strengthening and toughening of polymer are frequently necessary but very challenging in many cases. In this work, we propose a new concept of nanoconcrete welding polymer chains, where mesoporous CaCO3 (mCaCO3) nanoconcretes which are composed of amorphous and nanocrystalline phases are developed to powerfully weld polymer chains through siphoning-induced occlusion, hydration-driven crystallization and dehydration-driven compression of nanoconcretes. The mCaCO3 nanoconcrete welding technology is verified to be able to remarkably augment strength, toughness and anti-fatigue performances of a model polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-based porous membrane. Mechanistically, we have revealed polymer-occluded nanocrystal structure and welding-derived microstress which is much stronger than interfacial Van der Waals force, thus efficiently preventing the generation of microcracks and repairing initial microcracks by microcracks-induced hydration, crystallization and polymer welding of mCaCO3 nanoconcretes. Constructed porous membrane is used as wound dressing, exhibiting a special nanoplates-constructed surface topography as well as a porous structure with plentiful oriented, aligned and opened pore channels, improved hydrophilicity, water vapor permeability, anti-bacterial and cell adherence, in support of wound healing and skin structural/functional repairing. The proposed nanoconcrete-welding-polymer strategy breaks a new pathway for improving the mechanical performances of polymers.

Keywords: Calcium carbonate; Mechanical performances; Mesoporous materials; Organic/inorganic nanocomposite; Tissue engineering; Wound dressing.