Protecting Light Metal Alloys Using a Sustainable Plasma Electrolytic Oxidation Process

ACS Omega. 2022 Mar 2;7(10):8570-8580. doi: 10.1021/acsomega.1c06442. eCollection 2022 Mar 15.

Abstract

Low-density metals such as Mg and Al (and their alloys) are of high interest for lightweight engineering applications in various industries. Moisture sensitivity, poor tribology, and corrosion susceptibility limit the direct application of these light metals. Plasma electrolytic oxidation (PEO) is extensively used to passivate light metals against corrosion and enhance their mechanical properties. PEO processes in current use are often energy-intensive and use toxic electrolytes. Incorporating composite characteristics to PEO-treated surfaces typically requires modification of electrolytes with nanoparticle addition. Some applications also need post-treatment of oxidized coatings to ensure functionality. We report a versatile, environmentally friendly PEO process that uses organo-silicate electrolytes enriched with nitrogen-containing solutions. The single-step process produces ∼6 μm thick, uniform, adherent, and porous oxide coatings on AZ80 and Al6061 surfaces in 15 min. We evaluated the influence and effectiveness of in situ nitridation by comparing the coating properties with those on alloys treated in PEO electrolytes without nitrogen-containing chemicals. The two sets of coatings were porous with multilayered basalt-like topographies and were composed of metal oxides and metal silicates. Alloys treated in nitrogen-containing electrolytes exhibited the presence of oxynitrides. The use of nitrogen-containing PEO electrolytes resulted in coatings with enhanced mechanical behavior. We found that the corrosion resistance of coatings prepared using low voltages in this study was comparable to the traditional PEO-treated coatings reported in the literature. Nitridation of the coatings, however, appears to have a slightly negative influence on the coatings' corrosion resistance. Our future work will focus on improving the corrosion resistance of the mechanically resilient, nitride-containing PEO-treated coatings.