Genomic Epidemiology of Carbapenemase-producing Klebsiella pneumoniae in China

Genomics Proteomics Bioinformatics. 2022 Dec;20(6):1154-1167. doi: 10.1016/j.gpb.2022.02.005. Epub 2022 Mar 18.

Abstract

The rapid spread of carbapenemase-producing Klebsiella pneumoniae (cpKP) poses serious threats to public health; however, the underlying genetic basis for its dissemination is still unknown. We conducted a comprehensive genomic epidemiology analysis on 420 cpKP isolates collected from 70 hospitals in 24 provinces/autonomous regions/municipalities of China during 2009-2017 by short-/long-read sequencing. The results showed that most cpKP isolates were categorized into clonal group 258 (CG258), in which ST11 was the dominant clone. Phylogenetic analysis revealed three major clades including the top one of Clade 3 for CG258 cpKP isolates. Additionally, carbapenemase gene analysis indicated that blaKPC was dominant in the cpKP isolates, and most blaKPC genes were located in five major incompatibility (Inc) groups of blaKPC-harboring plasmids. Importantly, three advantageous combinations of host-blaKPC-carrying plasmid (Clade 3.1+3.2-IncFIIpHN7A8, Clade 3.1+3.2-IncFIIpHN7A8:IncR, and Clade 3.3-IncFIIpHN7A8:IncpA1763-KPC) were identified to confer cpKP isolates the advantages in both genotypes (strong correlation/coevolution) and phenotypes (resistance/growth/competition) to facilitate the nationwide spread of ST11/CG258 cpKP. Intriguingly, Bayesian skyline analysis illustrated that the three advantageous combinations might be directly associated with the strong population expansion during 2007-2008 and subsequent maintenance of the population of ST11/CG258 cpKP after 2008. We then examined drug resistance profiles of these cpKP isolates and proposed combination treatment regimens for CG258/non-CG258 cpKP infections. Thus, the findings of our systematical analysis shed light on the molecular epidemiology and genetic basis for the dissemination of ST11/CG258 cpKP in China, and much emphasis should be given to the close monitoring of advantageous cpKP-plasmid combinations.

Keywords: Carbapenemase; Drug resistance; Genomic epidemiology; Klebsiella pneumoniae; Plasmid.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Anti-Bacterial Agents / therapeutic use
  • Bacterial Proteins* / genetics
  • Bayes Theorem
  • China / epidemiology
  • Genomics
  • Klebsiella pneumoniae* / genetics
  • Phylogeny
  • Plasmids / genetics

Substances

  • carbapenemase
  • Bacterial Proteins
  • Anti-Bacterial Agents