Metal - organic frameworks derived Ni5P4/NC@CoFeP/NC composites for highly efficient oxygen evolution reaction

J Colloid Interface Sci. 2022 Jul:617:585-593. doi: 10.1016/j.jcis.2022.02.105. Epub 2022 Mar 3.

Abstract

As an efficient non-precious metal catalyst for the oxygen evolution reaction (OER), phosphides suffer from poor electrical conductivity, so it is still a challenge to reasonably design their structures to further improve their conductivity and OER performances. Here, we present a novel Ni5P4/N-doped carbon@CoFeP/N-doped carbon composite (Ni5P4/NC@CoFeP/NC) as electrocatalysts for OER. This elaborate structure consists of Ni5P4/NC derived from Ni-MOF and CoFeP/NC derived from CoFe-Prussian blue analog MOF (Co-Fe PBA). The cube-like CoFeP/NC are scattered and uniformly coated on the sheet of Ni5P4/NC flowers. Among them, NC can enhance the conductivity of phosphides, while CoFeP/NC can increase the electrochemical active area, which benefit the properties of Ni5P4/NC@CoFeP/NC. Notably, the Ni5P4/NC@CoFeP/NC catalyst possesses outstanding OER performances with a low overpotential of 260 and 303 mV at a current density of 10 and 100 mA·cm-2, an ultra-low Tafel slope of 31.1 mV·dec-1 and excellent stability in 1 M KOH. XPS analysis shows that proper chemical composition promotes the oxidation of transition metal species and the chemisorption of OH-, thus accelerating the OER kinetics. Therefore, this work provides a hopeful method for designing and preparing transition metal phosphide/carbon composite as OER electrocatalysts.

Keywords: MOFs; Ni(5)P(4)/NC@CoFeP/NC; Oxygen evolution reaction; Stability.