Force-generating apoptotic cells orchestrate avian neural tube bending

Dev Cell. 2022 Mar 28;57(6):707-718.e6. doi: 10.1016/j.devcel.2022.02.020. Epub 2022 Mar 17.

Abstract

Apoptosis plays an important role in morphogenesis, and the notion that apoptotic cells can impact their surroundings came to light recently. However, how this applies to vertebrate morphogenesis remains unknown. Here, we use the formation of the neural tube to determine how apoptosis contributes to morphogenesis in vertebrates. Neural tube closure defects have been reported when apoptosis is impaired in vertebrates, although the cellular mechanisms involved are unknown. Using avian embryos, we found that apoptotic cells generate an apico-basal force before being extruded from the neuro-epithelium. This force, which relies on a contractile actomyosin cable that extends along the apico-basal axis of the cell, drives nuclear fragmentation and influences the neighboring tissue. Together with the morphological defects observed when apoptosis is prevented, these data strongly suggest that the neuroepithelium keeps track of the mechanical impact of apoptotic cells and that the apoptotic forces, cumulatively, contribute actively to neural tube bending.

Keywords: apoptosis; epithelium folding; mechanical forces; morphogenesis; neural tube closure; nucleus fragmentation; quail/chicken.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Epithelium
  • Morphogenesis
  • Neural Tube*
  • Neurulation*