Giant Viscoelasticity near Mott Criticality in PbCrO_{3} with Large Lattice Anomalies

Phys Rev Lett. 2022 Mar 4;128(9):095702. doi: 10.1103/PhysRevLett.128.095702.

Abstract

Coupling of charge and lattice degrees of freedom in materials can produce intriguing electronic phenomena, such as conventional superconductivity where the electrons are mediated by lattice for creating supercurrent. The Mott transition, which is a source for many fascinating emergent behaviors, is originally thought to be driven solely by correlated electrons with an Ising criticality. Recent studies on the known Mott systems have shown that the lattice degree of freedom is also at play, giving rise to either Landau or unconventional criticality. However, the underlying coupling mechanism of charge and lattice degrees of freedom around the Mott critical end point remains elusive, leading to difficulties in understanding the associated Mott physics. Here, we report a study of Mott transition in cubic PbCrO_{3} by measuring the lattice parameter, using high-pressure x-ray diffraction techniques. The Mott criticality in this material is revealed with large lattice anomalies, which is governed by giant viscoelasticity that presumably results from a combination of lattice elasticity and electron viscosity. Because of the viscoelastic effect, the lattice of this material behaves peculiarly near the critical end point, inconsistent with any existing university classes. We argue that the viscoelasticity may play as a hidden degree of freedom behind the Mott criticality.