Precipitous Increase of Bacterial CRISPR-Cas Abundance at Around 45°C

Front Microbiol. 2022 Mar 1:13:773114. doi: 10.3389/fmicb.2022.773114. eCollection 2022.

Abstract

Although performing adaptive immunity, CRISPR-Cas systems are present in only 40% of bacterial genomes. We observed an abrupt increase of bacterial CRISPR-Cas abundance at around 45°C. Phylogenetic comparative analyses confirmed that the abundance correlates with growth temperature only at the temperature range around 45°C. From the literature, we noticed that the diversities of cellular predators (like protozoa, nematodes, and myxobacteria) have a steep decline at this temperature range. The grazing risk faced by bacteria reduces substantially at around 45°C and almost disappears above 60°C. We propose that viral lysis would become the dominating factor of bacterial mortality, and antivirus immunity has a higher priority at higher temperatures. In temperature ranges where the abundance of cellular predators does not change with temperature, the growth temperatures of bacteria would not significantly affect their CRISPR-Cas contents. The hypothesis predicts that bacteria should also be rich in CRISPR-Cas systems if they live in other extreme conditions inaccessible to grazing predators.

Keywords: CRISPR-Cas; bacteria; mortality; optimal growth temperature; protistan grazing; viral lysis.