Rapid and label-free detection of Aflatoxin-B1 via microfluidic electrochemical biosensor based on manganese (III) oxide (Mn3O4) synthesized by co-precipitation route at room temperature

Nanotechnology. 2022 Apr 22;33(28). doi: 10.1088/1361-6528/ac5ee2.

Abstract

Aflatoxin B1 (AFB1) is the most toxic mycotoxin, naturally occurring in food items, and it causes several types of lethal diseases. Therefore, a rapid and convenient detection method for AFB1 is the first step toward overcoming the effect of AFB1. The current work presents the development of an efficient microfluidic electrochemical-based biosensor using tri-manganese tetroxide nanoparticles (Mn3O4nps) for AFB1 detection. The Mn3O4nps were synthesized at room temperature through the co-precipitation route. Its phase purity, structural and morphological studies have been characterized through x-ray diffraction, Raman spectroscopy, energy-dispersive x-ray, Fourier transform infrared spectroscopy and transmission electron microscopy. The mask-less UV-lithography was carried out to fabricate the three-electrode chip and microfluidic channel of the microfluidic electrochemical biosensing system. The designed microfluidic immunosensor (BSA/Ab-AFB1/Mn3O4/ITO) was fabricated using the three-electrode chip, microfluidic channel in poly-dimethyl siloxane. The fabricated sensor exhibited the 3.4μA ml ng-1cm-2sensitivity and had the lowest lower detection limit of 0.295 pg ml-1with the detection range of 1 pg ml-1to 300 ng ml-1. Additionally, the spiked study was also performed with this immunoelectrode and a recovery rate was obtained of 108.2%.

Keywords: aflatoxin B1; electrochemical biosensor; microfluidics; trimanganese tetraoxide.

MeSH terms

  • Aflatoxins*
  • Biosensing Techniques* / methods
  • Electrochemical Techniques / methods
  • Immunoassay
  • Limit of Detection
  • Manganese
  • Oxides / chemistry
  • Temperature

Substances

  • Aflatoxins
  • Oxides
  • Manganese