Gene signature associated with resistance to fluvastatin chemoprevention for breast cancer

BMC Cancer. 2022 Mar 17;22(1):282. doi: 10.1186/s12885-022-09353-2.

Abstract

Background: Although targeting of the cholesterol pathway by statins prevents breast cancer development in mouse models, efficacy is not absolute. Therefore, the goal of this study is to investigate if the upregulation in the cholesterol biosynthesis pathway genes associates with response to statin chemoprevention and may potentially be used as response biomarkers.

Methods: Expression of cholesterol biosynthesis pathway genes was initially derived from the RNA sequencing of MCF10A cell line- based breast cancer progression model system and subsequently validated by quantitative PCR assay. Response to fluvastatin was assessed in vitro using the MCF10A cell line model system, including a statin resistant cell line that was generated (MCF10.AT1-R), and measured using colony forming assays. In vivo efficacy of statin for chemoprevention was assessed in the SV40C3 TAg mouse model. Mammary tumors were identified by histologic analysis of the mammary glands. Mammary glands without histologic evidence of high-grade lesions (in situ and/or invasive carcinoma) were considered responsive to statin treatment.

Results: We found more than 70% of a published multi-gene fluvastatin resistance signature to be significantly upregulated during breast cancer progression and inversely correlated with statin inhibition of cellular growth and proliferation. This inherent statin resistance gene signature was also largely shared with the signature of acquired resistance to fluvastatin in MCF10.AT1-R cell line model of acquired statin resistance. These inherent resistance genes and genes exclusive to acquired statin resistance map to steroid-, and terpenoid backbone- biosynthesis pathway. We found upregulation of ~ 80% of cholesterol biosynthesis pathway genes in the tumor bearing mammary glands of SV40 C3TAg transgenic mouse model of TNBC, suggesting the involvement of cholesterol biosynthesis pathway in resistance to statin chemoprevention in vivo. A panel of 13-genes from the pathway significantly associated with response to statin treatment, as did the expression level of HMGCR alone in a mouse model of breast cancer suggesting their utility to predict the efficacy of statin chemoprevention.

Conclusions: High basal level, or restorative upregulation, in the cholesterol biosynthesis pathway genes appear to be strongly associated with resistance to statin chemoprevention for breast cancer and may serve as a biomarker to tailor statin treatment to individuals who are most likely to benefit.

Keywords: Breast cancer prevention; Cholesterol biosynthesis; Resistance gene signature; Statin; Statin response.

MeSH terms

  • Animals
  • Breast Neoplasms* / drug therapy
  • Breast Neoplasms* / genetics
  • Breast Neoplasms* / prevention & control
  • Chemoprevention
  • Cholesterol
  • Female
  • Fluvastatin / pharmacology
  • Fluvastatin / therapeutic use
  • Humans
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors* / pharmacology
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors* / therapeutic use
  • Mice

Substances

  • Hydroxymethylglutaryl-CoA Reductase Inhibitors
  • Fluvastatin
  • Cholesterol