Txnip deficiency promotes β-cell proliferation in the HFD-induced obesity mouse model

Endocr Connect. 2022 Apr 29;11(4):e210641. doi: 10.1530/EC-21-0641.

Abstract

Elucidating the mechanisms of regulation of β-cell proliferation is key to understanding the pathogenesis of diabetes mellitus. Txnip is a tumor suppressor that is upregulated in diabetes and plays an important role in the regulation of insulin sensitivity; however, its potential effect on pancreatic β-cell proliferation remains unclear. Here, we evaluated the role of Txnip in pancreatic β-cell compensatory proliferation by subjecting WT and Txnip knockout (KO) mice to a high-fat diet (HFD). Our results demonstrate that Txnip deficiency improves glucose tolerance and increases insulin sensitivity in HFD-induced obesity. The antidiabetogenic effect of Txnip deficiency was accompanied by increased β-cell proliferation and enhanced β-cell mass expansion. Furthermore, Txnip deficiency modulated the expression of a set of transcription factors with key roles in β-cell proliferation and cell cycle regulation. Txnip KO in HFD mice also led to activated levels of p-PI3K, p-AKT, p-mTOR and p-GSK3β, suggesting that Txnip may act via PI3K/AKT signaling to suppress β-cell proliferation. Thus, our work provides a theoretical basis for Txnip as a new therapeutic target for the treatment of diabetes mellitus.

Keywords: PI3K/AKT signaling pathway; Txnip; pancreatic β cell; proliferation.