Memory effects in spiral diffusion of rotary self-propellers

Phys Rev E. 2022 Feb;105(2-1):024606. doi: 10.1103/PhysRevE.105.024606.

Abstract

The coupling of deterministic rotary motion and stochastic orientational diffusion of a self-propeller leads to a spiral trajectory of the expected displacement. We extend our former analysis of spiral diffusion [Phys. Rev. E 94, 030601(R) (2016)10.1103/PhysRevE.94.030601] in the white-noise limit to a more realistic scenario of stochastic noise with Gaussian memory and orientational fluctuations driven by an Ornstein-Uhlenbeck process. A variety of dynamical regimes including crossovers from ballistic to diffusive to ballistic in the angular dynamics are determined by the inertial timescale, orientational diffusivity, and angular speed.