Diffusion of chiral active particles in a Poiseuille flow

Phys Rev E. 2022 Feb;105(2-1):024604. doi: 10.1103/PhysRevE.105.024604.

Abstract

We study the diffusive behavior of chiral active (self-propelled) Brownian particles in a two-dimensional microchannel with a Poiseuille flow. Using numerical simulations, we show that the behavior of the transport coefficients of particles, for example, the average velocity v and the effective diffusion coefficient D_{eff}, strongly depends on flow strength u_{0}, translational diffusion constant D_{0}, rotational diffusion rate D_{θ}, and chirality of the active particles Ω. It is demonstrated that the particles can exhibit upstream drift, resulting in a negative v, for the optimal parameter values of u_{0}, D_{θ}, and Ω. Interestingly, the direction of v can be controlled by tuning these parameters. We observe that for some optimal values of u_{0} and Ω, the chiral particles aggregate near a channel wall and the corresponding D_{eff} are enhanced. However, for the nonchiral particles (Ω=0), D_{eff} is suppressed by the presence of Poiseuille flow. It is expected that these findings have a great potential for developing microfluidic and lab-on-a-chip devices for separating the active particles.