Are 2D Interfaces Really Flat?

ACS Nano. 2022 Apr 26;16(4):5316-5324. doi: 10.1021/acsnano.1c11493. Epub 2022 Mar 15.

Abstract

Two-dimensional (2D) van der Waals materials are subject to mechanical deformation and thus forming bubbles and wrinkles during exfoliation and transfer. A lack of interfacial "flatness" has implications for interface properties, such as those formed by metal contacts or insulating layers. Therefore, an understanding of the detailed properties of 2D interfaces, especially their flatness under different conditions, is of high importance. Here we use cross-sectional scanning transmission electron microscopy (STEM) to investigate various 2D interfaces (2D-2D and 3D-2D) under the effects of stacking, atomic layer deposition (ALD), and metallization. We characterize and compare the flatness of the hBN-2D and metal-2D interfaces down to angstrom resolution. It is observed that the dry transfer of hexagonal boron nitride (hBN) can dramatically alter the interface structure. When characterizing 3D metal-2D interfaces, we find that Ni-MoS2 interfaces are more uneven and have larger nanocavities compared to other metal-2D interfaces. The electrical characteristics of a MoS2-based field-effect transistor are correlated to the interfacial transformation in the contact and channel regions. The device transconductance is improved by 40% after the hBN encapsulation, likely due to the interface interactions at both the channel and contacts. Overall, these observations reveal the intricacy of 2D interfaces and their dependence on the fabrication processes.

Keywords: 2D interfaces; MoS2; flatness; hBN; nanocavities; nanogaps; strain.