Preparation and performance of photocatalytic NO degradation superhydrophobic coatings for tunnel

Environ Sci Pollut Res Int. 2022 Jul;29(35):53420-53432. doi: 10.1007/s11356-022-19653-6. Epub 2022 Mar 14.

Abstract

Due to the semi-closed structure of the tunnel, serious air pollution in tunnels from vehicle exhaust becomes an issue which needed to be addressed. Among the exhaust, nitric oxide (NO) is typically considered as one of the main pollutants. In this paper, a superhydrophobic photocatalytic coating was fabricated by a spraying method by airbrush with a WO3/TiO2 photocatalysis for NO degradation. The water advanced contact angle (WACA) of the coating reached 166.32°, and the WACA was still above 145° after the 30 times abrasion test. The coating exhibited an excellent ability to remove inorganic and organic pollutants. Also, the NO degradation efficiency of this superhydrophobic coating under ultraviolet and visible light sources and humid environments was tested. When the relative humidity reached 98%, the NO degradation efficiency of the coating remained unchanged under visible light irradiation compared with the relative humidity of 45%. In addition, the coating exhibited prominent stability of NO degradation during the cyclic test. Furthermore, the WT coating showed stability and synergy of self-cleaning and photocatalysis toward NO degradation, which ensured the long-term use of the coating. Finally, a synergistic mechanism for self-cleaning and photocatalysis was proposed. This may provide a new idea and support for the application of photocatalytic technology in the degradation of NO in the tunnel.

Keywords: Hydrophobic; NO degradation; Photocatalytic coating; Self-cleaning; Tunnel.