Degradation of Carbendazim by Molecular Hydrogen on Leaf Models

Plants (Basel). 2022 Feb 25;11(5):621. doi: 10.3390/plants11050621.

Abstract

Although molecular hydrogen can alleviate herbicide paraquat and Fusarium mycotoxins toxicity in plants and animals, whether or how molecular hydrogen influences pesticide residues in plants is not clear. Here, pot experiments in greenhouse revealed that degradation of carbendazim (a benzimidazole pesticide) in leaves could be positively stimulated by molecular hydrogen, either exogenously applied or with genetic manipulation. Pharmacological and genetic increased hydrogen gas could increase glutathione metabolism and thereafter carbendazim degradation, both of which were abolished by the removal of endogenous glutathione with its synthetic inhibitor, in both tomato and in transgenic Arabidopsis when overexpressing the hydrogenase 1 gene from Chlamydomonas reinhardtii. Importantly, the antifungal effect of carbendazim in tomato plants was not obviously altered regardless of molecular hydrogen addition. The contribution of glutathione-related detoxification mechanism achieved by molecular hydrogen was confirmed. Our results might not only illustrate a previously undescribed function of molecular hydrogen in plants, but also provide an environmental-friendly approach for the effective elimination or reduction of pesticides residues in crops when grown in pesticides-overused environmental conditions.

Keywords: carbendazim degradation; detoxification system; glutathione metabolism; hydrogen gas; redox balance.