Degradation of Tetracycline Hydrochloride by Cu-Doped MIL-101(Fe) Loaded Diatomite Heterogeneous Fenton Catalyst

Nanomaterials (Basel). 2022 Feb 28;12(5):811. doi: 10.3390/nano12050811.

Abstract

In this work, the combination of high surface area diatomite with Fe and Cu bimetallic MOF material catalysts (Fe0.25Cu0.75(BDC)@DE) were synthesized by traditional solvothermal method, and exhibited efficient degradation performance to tetracycline hydrochloride (TC). The degradation results showed: Within 120 min, about 93% of TC was degraded under the optimal conditions. From the physical-chemical characterization, it can be seen that Fe and Cu play crucial roles in the reduction of Fe3+ because of their synergistic effect. The synergistic effect can not only increase the generation of hydroxyl radicals (•OH), but also improve the degradation efficiency of TC. The Lewis acid property of Cu achieved the pH range of reaction system has been expanded, and it made the material degrade well under both neutral and acidic conditions. Loading into diatomite can reduce agglomeration and metal ion leaching, thus the novel catalysts exhibited low metal ion leaching. This catalyst has good structural stability, and less loss of performance after five reaction cycles, and the degradation efficiency of the material still reached 81.8%. High performance liquid chromatography-mass spectrometry was used to analyze the degradation intermediates of TC, it provided a deep insight of the mechanism and degradation pathway of TC by bimetallic MOFs. This allows us to gain a deeper understanding of the catalytic mechanism and degradation pathway of TC degradation by bimetallic MOFS catalysts. This work has not only achieved important progress in developing high-performance catalysts for TC degradation, but has also provided useful information for the development of MOF-based catalysts for rapid environmental remediation.

Keywords: Fenton-like catalyst; antibiotics; bimetallic MOF; diatomite; synergistic effect.