Bonding Behaviour of Steel Fibres in UHPFRC Based on Alkali-Activated Slag

Materials (Basel). 2022 Mar 4;15(5):1930. doi: 10.3390/ma15051930.

Abstract

The mechanical performance of fibre-reinforced ultra-high-performance concrete based on alkali-activated slag was investigated, concentrating on the use of steel fibres. The flexural strength is slightly higher compared to the UHPC based on Ordinary Portland Cement (OPC) as the binder. Correlating the flexural strength test with multiple fibre-pullout tests, an increase in the bonding behaviour at the interfacial-transition zone of the AAM-UHPC was found compared to the OPC-UHPC. Microstructural investigations on the fibres after storage in an artificial pore solution and a potassium waterglass indicated a dissolution of the metallic surface. This occurred more strongly with the potassium waterglass, which was used as an activator solution in the case of the AAM-UHPC. From this, it can be assumed that the stronger bond results from this initial etching for steel fibres in the AAM-UHPC compared to the OPC-UHPC. The difference in the bond strength of both fibre types, the brass-coated steel fibres and the stainless-steel fibres, was rather low for the AAM-UHPC compared to the OPC-UHPC.

Keywords: fibre pullout; fibre reinforcement; potassium waterglass; silica fume; ultra-high-performance concrete.