Antibacterial and Antibiofilm Properties of Three Resin-Based Dental Composites against Streptococcus mutans

Materials (Basel). 2022 Mar 3;15(5):1891. doi: 10.3390/ma15051891.

Abstract

Antibacterial and antibiofilm properties of restorative dental materials may improve restorative treatment outcomes. The aim of this in vitro study was to evaluate Streptococcus mutans capability to adhere and form biofilm on the surface of three commercially available composite resins (CRs) with different chemical compositions: GrandioSO (VOCO), Venus Diamond (VD), and Clearfil Majesty (ES-2). Disk-shaped specimens were manufactured by light-curing the CRs through two glass slides to maintain a perfectly standardized surface topography. Specimens were subjected to Planktonic OD600nm, Planktonic CFU count, Planktonic MTT, Planktonic live/dead, Adherent Bacteria CFU count, Biomass Quantification OD570nm, Adherent Bacteria MTT, Concanavalin A, and Scanning Electron Microscope analysis. In presence of VOCO, VD, and ES2, both Planktonic CFU count and Planktonic OD600nm were significantly reduced compared to that of control. The amount of Adherent CFUs, biofilm Biomass, metabolic activity, and extracellular polymeric substances were significantly reduced in VOCO, compared to those of ES2 and VD. Results demonstrated that in presence of the same surface properties, chemical composition might significantly influence the in vitro bacterial adhesion/proliferation on resin composites. Additional studies seem necessary to confirm the present results.

Keywords: Streptococcus mutans; bacterial adhesion; biofilm formation; composite resins; dental caries.