Properties and Microstructure of Na2CO3-Activated Binders Modified with Ca(OH)2 and Mg(OH)2

Materials (Basel). 2022 Feb 24;15(5):1687. doi: 10.3390/ma15051687.

Abstract

Delayed strength development and long setting times are the main disadvantageous properties of Na2CO3-activated slag cements. In this work, combined auxiliary activators of Ca(OH)2 and Mg(OH)2 were incorporated in one-part Na2CO3-activated slag binders to accelerate the kinetics of alkali activation. The properties and microstructure evolution were investigated to clarify the reaction mechanism. The results showed that the additions of auxiliary activators promoted the hardening of the pastes within 2 h. The 28 days compressive strengths were in the range of 39.5-45.5 MPa, rendering the binders practical cementitious materials in general construction applications. Ca(OH)2 was more effective than Mg(OH)2 in accelerating the kinetics of alkali activation. The dissolution of Ca(OH)2 released more OH- and Ca2+ ions in the aqueous phase to increase alkalinity in the aqueous phase and promote the formation of the main binding gel phase of calcium-aluminosilicate hydrate (C-A-S-H). An increase in the Ca(OH)2/Mg(OH)2 ratios increased autogenous shrinkage and decreased drying shrinkage of the binders. The formation of a compact pore structure restricted the water evaporation from the binders during the drying procedure.

Keywords: alkali-activated slag; auxiliary activator; one-part geopolymer; shrinkage; sodium carbonate.