Maternal Amino Acid Status in Severe Preeclampsia: A Cross-Sectional Study

Nutrients. 2022 Feb 28;14(5):1019. doi: 10.3390/nu14051019.

Abstract

Introduction: Preeclampsia has been one of the leading causes of maternal death in Indonesia. It is postulated that its relationship with oxidative stress may be the underlying pathology of the disease. Nutrients and amino acids have been suggested as a scavenger for oxygen-free radicals. No previous study regarding the amino acid status in preeclampsia has been conducted in women in Indonesia.

Methods: This was a cross-sectional study of a total of 64 pregnant women, 30 with normal pregnancy and 34 with severe preeclampsia. Data were obtained in Cipto Mangunkusumo National Referral Hospital in Jakarta from July to December 2020. Maternal blood samples were taken during or soon after delivery. Amino acid levels were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Bivariate analysis was then performed.

Results: We identified 19 different levels of amino acids in this study. Four amino acids that were elevated in the preeclampsia group were phenylalanine, serine, glycine, and glutamate. Serine (331.55 vs. 287.43; p = 0.03), glycine (183.3 vs. 234.35, p = 0.03), and glutamate levels (102.23 vs. 160.70, p = 0.000) were higher in preeclamptic patients. While in the essential amino acids group, phenylalanine levels (71.5 vs. 85.5, p = 0.023) were higher, and methionine levels (16.3 vs. 12.9, p = 0.022) were lower in preeclamptic patients.

Conclusions: These findings suggest that severe preeclampsia had differences in concentration of some amino acids compared to normal pregnancy. Glutamate and methionine were associated with preeclampsia. Furthermore, a more detailed study regarding amino acids in the pathomechanism of preeclampsia is suggested.

Keywords: amino acid; oxidative stress; preeclampsia.

MeSH terms

  • Amino Acids
  • Chromatography, Liquid
  • Cross-Sectional Studies
  • Female
  • Glutamic Acid
  • Humans
  • Pre-Eclampsia*
  • Pregnancy
  • Tandem Mass Spectrometry

Substances

  • Amino Acids
  • Glutamic Acid